A new procedure for the transesterification of alkyl acetates and formates with model glycerol acetals (GAs: Solketal and glycerol formal) was explored in the absence of any catalysts at 180–275 °C. Highly selective transformations occurred in both batch and continuous-flow (CF) modes; particularly, the enol derivative isopropenyl acetate (iPAc) was the best performing reactant by which quantitative acetylation reactions were achieved with yields on GAs acetates >95%. An excess acylating agent was necessary (2–20 molar equivs), but the unconverted ester was fully recovered and could be reused. The reaction plausibly involved multiple mechanisms where either the electrophilic and the nucleophilic activation of reagents took place through both traces of acetic acid (formed in situ by the hydrolysis of esters) and the autoprotolysis of GAs. iPAc confirmed a superior performance than other esters also for the high-temperature conversion of glycerol; in this case, although acylation and acetalization processes were simultaneously possible, conditions were optimized to achieve the exhaustive transesterification of glycerol to triacetin, in both batch and CF modes. Triacetin was isolated in 99% yield.