Logo del repository
  1. Home
 
Opzioni

Pointwise versions of solutions to Cauchy problems in $L^p$-spaces

Desch, Wolfgang
•
Homan, Krista W.
2002
  • Controlled Vocabulary...

Abstract
We consider a cauchy problem \[ \begin{array}{cc} \frac{\partial}{\partial t}\varphi\left(t,\omega\right)=\left(\mathcal{A\varphi\left(\mathit{t,\cdot}\right)}\right)\left(\omega\right),t>0 & \omega\epsilon\Omega\\ \varphi\left(0,\omega\right)=\varphi_{0}\left(\omega\right), & \omega\epsilon\Omega \end{array} \] and assume that it can be solved by a strongly continuous semigroup on a Banach space valued function space $L^{p}\left(\Omega,X\right)$. For fixed t > 0 the solution $\varphi\left(t,\omega\right)$ is only defined almost everywhere on $\Omega$. Therefore it is not obvious what kind of regularity of $t\mapsto\varphi\left(t,\omega\right)$ has for fixed $\omega\;\epsilon\;\Omega$. We show that if the semigroup is analityc, then there exists a version of $\varphi\left(t,\cdot\right)$ such that for almost every $\omega\;\epsilon\;\Omega$, $t\mapsto\varphi\left(t,\omega\right)$ is analityc in $\left(0,\infty\right)$.
Archivio
http://hdl.handle.net/10077/4200
Diritti
open access
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback