Logo del repository
  1. Home
 
Opzioni

Molecular clustering on ctDNA improves the prognostic stratification of patients with DLBCL compared with ctDNA levels

Moia, Riccardo
•
Talotta, Donatella
•
Terzi Di Bergamo, Lodovico
altro
Gaidano, Gianluca
2025
  • journal article

Periodico
BLOOD ADVANCES
Abstract
Circulating tumor DNA (ctDNA) levels can help predict outcomes in diffuse large B-cell lymphoma (DLBCL), but its integration with DLBCL molecular clusters remains unexplored. Using the LymphGen tool in 77 DLBCL cases with both ctDNA and tissue biopsy, a 95.8% concordance rate in molecular cluster assignment was observed, showing the reproducibility of molecular clustering on ctDNA. A multicenter, prospective cohort of 166 patients with newly diagnosed DLBCL was analyzed for ctDNA levels and molecular clusters using cancer personalized profiling by deep sequencing. Patients with ctDNA levels of <2.5 log10 haploid genome equivalents (hGE)/mL had a 4-year progression-free survival (PFS) and overall survival (OS) of 71.7% and 85.7%, respectively, compared with 50.3% and 61.0% for those with higher ctDNA levels (P = .0018 and P = .0017). Recursive partitioning showed that patients with ctDNA levels of ≥2.5 log10 hGE/mL were further stratified by clusters ST2/BN2. In this group, ST2/BN2 patients associated with a favorable outcome with a 4-year PFS and OS of 87.5% and 100%, respectively, compared to 38.0% and 47.1% for other clusters (P = .003 and P = .001). Combining ctDNA levels and ST2/BN2 clusters improved outcome prediction. Low-risk patients (n = 51), characterized by ctDNA levels of <2.5 log10 hGE/mL and/or BN2/ST2 cluster, had a 4-year PFS and OS of 75.3% and 87.8%, respectively. High-risk patients (n = 115), with ctDNA levels of ≥2.5 log10 hGE/mL and no BN2/ST2 cluster, had a 4-year PFS and OS of 38.0% and 47.1%, respectively. Adding cluster assignment to ctDNA levels improved the model’s C statistics (0.63 vs 0.59 for PFS; 0.68 vs 0.63 for OS). Liquid biopsy thus provides a multilayered approach for outcome prediction in DLBCL.
DOI
10.1182/bloodadvances.2024014136
WOS
WOS:001465499300001
Archivio
https://hdl.handle.net/11368/3115020
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-105005981129
https://ashpublications.org/bloodadvances/article/9/7/1692/535190/Molecular-clustering-on-ctDNA-improves-the
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/bitstream/11368/3115020/1/Molecular clustering on ctDNA improves the prognostic.pdf
Soggetti
  • ctDNA

  • Molecular clustering

  • DLBCL

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback