Logo del repository
  1. Home
 
Opzioni

MAGIC detection of short-term variability of the high-peaked BL Lac object 1ES 0806+524

Aleksi , J.
•
ANSOLDI, STEFANO
•
Antonelli, L. A.
altro
Richards, J.
2015
  • journal article

Periodico
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Abstract
The high-frequency-peaked BL Lac (HBL) 1ES 0806+524 (z = 0.138) was discovered in very high energy (VHE) γ-rays in 2008. Until now, the broad-band spectrum of 1ES 0806+524 has been only poorly characterized, in particular at high energies. We analysed multiwavelength observations from γ-rays to radio performed from 2011 January to March, which were triggered by the high activity detected at optical frequencies. These observations constitute the most precise determination of the broad-band emission of 1ES 0806+524 to date. The stereoscopic Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) observations yielded a γ-ray signal above 250 GeV of (3.7 ± 0.7) per cent of the Crab Nebula flux with a statistical significance of 9.9σ. The multiwavelength observations showed significant variability in essentially all energy bands, including a VHE γ-ray flare that lasted less than one night, which provided unprecedented evidence for short-term variability in 1ES 0806+524. The spectrum of this flare is well described by a power law with a photon index of 2.97 ± 0.29 between ̃150 GeV and 1 TeV and an integral flux of (9.3 ± 1.9) per cent of the Crab nebula flux above 250 GeV. The spectrum during the non-flaring VHE activity is compatible with the only available VHE observation performed in 2008 with VERITAS when the source was in a low optical state. The broad-band spectral energy distribution can be described with a one-zone synchrotron self-Compton model with parameters typical for HBLs, indicating that 1ES 0806+524 is not substantially different from the HBLs previously detected.
DOI
10.1093/mnras/stv895
WOS
WOS:000360827800057
Archivio
http://hdl.handle.net/11368/2842854
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84938225881
Diritti
closed access
license:digital rights management non definito
FVG url
https://arts.units.it/request-item?handle=11368/2842854
Soggetti
  • radiation mechanisms:...

Web of Science© citazioni
24
Data di acquisizione
Mar 20, 2024
Visualizzazioni
1
Data di acquisizione
Jun 8, 2022
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback