Logo del repository
  1. Home
 
Opzioni

A galaxy-driven model of type Ia supernova luminosity variations

Wiseman, P.
•
Vincenzi, M.
•
Sullivan, M.
altro
DES Collaboration
2022
  • journal article

Periodico
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Abstract
Type Ia supernovae (SNe Ia) are used as standardizable candles to measure cosmological distances, but differences remain in their corrected luminosities which display a magnitude step as a function of host galaxy properties such as stellar mass and rest-frame U-R colour. Identifying the cause of these steps is key to cosmological analyses and provides insight into SN physics. Here we investigate the effects of SN progenitor ages on their light-curve properties using a galaxy-based forward model that we compare to the Dark Energy Survey 5-yr SN Ia sample. We trace SN Ia progenitors through time and draw their light-curve width parameters from a bimodal distribution according to their age. We find that an intrinsic luminosity difference between SNe of different ages cannot explain the observed trend between step size and SN colour. The data split by stellar mass are better reproduced by following recent work implementing a step in total-to-selective dust extinction ratio (R-V) between low- and high-mass hosts, although an additional intrinsic luminosity step is still required to explain the data split by host galaxy U-R. Modelling the R-V step as a function of galaxy age provides a better match overall. Additional age versus luminosity steps marginally improve the match to the data, although most of the step is absorbed by the width versus luminosity coefficient alpha. Furthermore, we find no evidence that alpha varies with SN age.
DOI
10.1093/mnras/stac1984
WOS
WOS:000841540900010
Archivio
https://hdl.handle.net/11368/3037683
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85140963316
https://academic.oup.com/mnras/article/515/3/4587/6649823
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3037683/1/stac1984.pdf
Soggetti
  • supernovae general

  • dust

  • extinction

  • galaxies evolution

  • cosmology observation...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback