Logo del repository
  1. Home
 
Opzioni

Inflammation influences steroid hormone receptors targeted by progestins in endometrial stromal cells from women with endometriosis

Grandi, Giovanni
•
Mueller, Michael D.
•
Papadia, Andrea
altro
CAGNACCI, Angelo
2016
  • journal article

Periodico
JOURNAL OF REPRODUCTIVE IMMUNOLOGY
Abstract
Endometriosis is an estrogen-dependent disease characterised by the growth of endometrial epithelial and stromal cells outside the uterus creating a chronic inflammatory environment that further contributes to disease progression. The first choice treatment for endometriosis is currently progestin mediated hormone modulation. In addition to their progestogenic activity however, progestins also have the potential to bind to other nuclear receptors influencing their local activity on endometriotic cells. This local activity will be dependent on the steroid hormone receptor expression that occurs in endometrial cells in a chronic inflammatory environment. We therefore aimed to quantify receptors targeted by progestins in endometrial stromal cells after exposure to inflammation. Using primary endometrial stromal cells isolated from women with endometriosis we examined the mRNA and protein expression of the progesterone receptors A and B, membrane progesterone receptors 1 and 2, androgen receptors, mineralocorticoid receptors and glucocorticoid receptors after exposure to the inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β). The results indicate that both cytokines reduced the expression of progesterone receptors and increased the expression of the glucocorticoid receptors in the endometrial stromal cells. The change in expression of progestin targets in endometrial stromal cells in an inflammatory environment could contribute to the progesterone resistance observed in endometriotic cells and ultimately influence the design of hormonal therapies aimed at treating this disease
Endometriosis is an estrogen-dependent disease characterised by the growth of endometrial epithelial and stromal cells outside the uterus creating a chronic inflammatory environment that further contributes to disease progression. The first choice treatment for endometriosis is currently progestin mediated hormone modulation. In addition to their progestogenic activity however, progestins also have the potential to bind to other nuclear receptors influencing their local activity on endometriotic cells. This local activity will be dependent on the steroid hormone receptor expression that occurs in endometrial cells in a chronic inflammatory environment. We therefore aimed to quantify receptors targeted by progestins in endometrial stromal cells after exposure to inflammation. Using primary endometrial stromal cells isolated from women with endometriosis we examined the mRNA and protein expression of the progesterone receptors A and B, membrane progesterone receptors 1 and 2, androgen receptors, mineralocorticoid receptors and glucocorticoid receptors after exposure to the inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β). The results indicate that both cytokines reduced the expression of progesterone receptors and increased the expression of the glucocorticoid receptors in the endometrial stromal cells. The change in expression of progestin targets in endometrial stromal cells in an inflammatory environment could contribute to the progesterone resistance observed in endometriotic cells and ultimately influence the design of hormonal therapies aimed at treating this disease.
DOI
10.1016/j.jri.2016.06.004
WOS
WOS:000383817500006
Archivio
http://hdl.handle.net/11390/1105834
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84976529623
www.elsevier.com/locate/jreprimm
Diritti
closed access
Soggetti
  • Androgen receptor

  • Endometriosi

  • Glucocorticoid recept...

  • Inflammation

  • Membrane progesterone...

  • Mineralocorticoid rec...

  • Progesterone receptor...

  • Progestin

  • Immunology

  • Immunology and Allerg...

  • Obstetrics and Gyneco...

  • Reproductive Medicine...

Scopus© citazioni
33
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
42
Data di acquisizione
Mar 26, 2024
Visualizzazioni
1
Data di acquisizione
Jun 8, 2022
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback