Logo del repository
  1. Home
 
Opzioni

The Hodge-Deligne polynomials of some moduli spaces of coherent systems

Tommasini, Matteo
2012-10-25
  • doctoral thesis

Abstract
A coherent system on a smooth projective curve C consists of a pair (E,V) where E is a vector bundle on C (of rank n and degree d) and V is a subspace (of dimension k) of $H^0(C,E)$. For each triple (n,d,k) there is a family of moduli spaces of coherent systems, depending on a real positive parameter $\alpha$. It is known that these moduli spaces change only if we pass through a finite set of critical values, so we have a finite number of distinct moduli spaces labeled according to the corresponding interval in the real line. The final moduli space is in general very simple to study, while not so much is known about the intermediate moduli spaces and the first one (which has strong relations with the Brill-Noether locus $B(n,d,k)$). In particular, an interesting open problem is that of computing the Hodge-Deligne polynomials of such moduli spaces. In the present work we get some explicit results in the cases (n=2,k=1) and (n=3,k=1), together with some general techniques that in principle could be used to tackle also more complicated cases. We give also some partial results on the cases (n=4,k=1) and (n=2,k=2).
Archivio
http://hdl.handle.net/20.500.11767/4691
Diritti
open access
Soggetti
  • Settore MAT/03 - Geom...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback