Logo del repository
  1. Home
 
Opzioni

Conforming virtual element method for nondivergence form linear elliptic equations with Cordes coefficients

Bonnet, Guillaume
•
Cangiani, Andrea
•
Nochetto, Ricardo H.
2025
  • journal article

Periodico
MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES
Abstract
We propose and analyze an H2-conforming virtual element method (VEM) for the simplest linear elliptic PDEs in nondivergence form with Cordes coefficients. The VEM hinges on a hierarchical construction valid for any dimension d ≥ 2. The analysis relies on the continuous Miranda-Talenti estimate for convex domains ω and is rather elementary. We prove stability and error estimates in H2(ω), including the effect of quadrature, under minimal regularity of the data. Numerical experiments illustrate the interplay of coefficient regularity and convergence rates in H2(ω).
DOI
10.1142/s0218202525500034
WOS
WOS:001396695500001
Archivio
https://hdl.handle.net/20.500.11767/149291
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85214879254
https://arxiv.org/abs/2404.08442
https://ricerca.unityfvg.it/handle/20.500.11767/149291
Diritti
closed access
license:non specificato
license uri:na
Soggetti
  • Cordes condition

  • discontinuous coeffic...

  • error analysis

  • H 2 conformity

  • nondivergence form

  • Virtual element metho...

  • Settore MAT/08 - Anal...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback