Logo del repository
  1. Home
 
Opzioni

Mirror Symmetry in Dimension 1 and Fourier–Mukai Transforms

Nicolò Sibilla
2014
  • book part

Abstract
In this paper we will describe an approach to mirror symmetry for appropriate one-dimensional DM stacks of arithmetic genus g ≤ 1, called tcnc curves, which was developed by the author with Treumann and Zaslow in Sibilla et al. (Ribbon Graphs and Mirror Symmetry I, arXiv:1103.2462). This involves introducing a conjectural sheaf-theoretic model for the Fukaya category of punctured Riemann surfaces. As an application, we will investigate derived equivalences of tcnc curves, and generalize classic results of Mukai on dual abelian varieties (Mukai, Nagoya Math. J. 81, 153–175, 1981).
Archivio
https://hdl.handle.net/20.500.11767/132670
Diritti
closed access
Soggetti
  • Settore MAT/03 - Geom...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback