Logo del repository
  1. Home
 
Opzioni

Multiple bounded variation solutions of a periodically perturbed sine-curvature equation

OBERSNEL, Franco
•
OMARI, PIERPAOLO
2011
  • journal article

Periodico
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS
Abstract
We prove the existence of at least two $T$-periodic solutions, not differing from each other by an integer multiple of $2\pi$, of the sine-curvature equation$$-\Big( u'/{ \sqrt{1+{u'}^2}}\Big)' = A \sin u + h(t).$$We assume that $A\in\RR$and $h\in L^1_{\rm loc}(\RR)$ is a $T$-periodic function such that $\int_0^T h \, dt=0$ and, e.g., $\|h\|_{L^\infty} < 4/T$. Our approach is variational and makes use of basic results of non-smooth critical point theory in the space of bounded variation functions.
DOI
10.1142/S0219199711004488
WOS
WOS:000296624200008
SCOPUS
2-s2.0-79960439559
Archivio
http://hdl.handle.net/11368/2309122
Diritti
metadata only access
Soggetti
  • Prescribed curvature ...

  • pendulum equation

  • periodic solution

  • bounded variation fun...

  • non-smooth critical p...

Scopus© citazioni
15
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
12
Data di acquisizione
Mar 24, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback