Logo del repository
  1. Home
 
Opzioni

Insight into the development of a carbonate platform through a multi-disciplinary approach - A case study from the Upper Devonian slope deposits of Mount Freikofel (Carnic Alps, Austria/Italy)

Pas D
•
Da Silva A-C
•
Suttner T
altro
Boulvain F
2014
  • journal article

Periodico
INTERNATIONAL JOURNAL OF EARTH SCIENCES
Abstract
The development and behavior of million year-scaled depositional sequences recorded within Palaeozoic carbonate platform has remained poorly examined. Therefore, the understanding of palaeoenvironmental changes that occur in geological past is still limited. We herein undertake a multi-disciplinary approach (sedimentology, conodont biostratigraphy, magnetic susceptibility (MS), and geochemistry) of a long-term succession in the Carnic Alps, which offers new insights into the peculiar evolution of one of the best example of Palaeozoic carbonate platform in Europe. The Freikofel section, located in the central part of the Carnic Alps, represents an outstanding succession in a fore-reef setting, extending from the Latest Givetian (indet. falsiovalis conodont zones) to the Early Famennian (Lower crepida conodont zone). Sedimentological analysis allowed to propose a sedimentary model dominated by distal slope and fore-reef-slope deposits. The most distal setting is characterized by an autochthonous pelagic sedimentation showing local occurrence of thin-bedded turbiditic deposits. In the fore-reef slope, in a more proximal setting, there is an accumulation of various autochthonous and allochthonous fine- to coarse-grained sediments originated from the interplay of gravity-flow currents derived from the shallow-water and deepwater area. The temporal evolution of microfacies in the Freikofel section evolves in two main steps corresponding to the Freikofel (Unit 1) and the Pal (Unit 2) limestones. Distal slope to fore-reef lithologies and associate changes are from base to top of the section: (U1) thick bedded litho- and bioclastic breccia beds with local fining upward sequence and fine-grained mudstone intercalations corresponding, in the fore-reef setting, to the dismantlement of the Eifelian–Frasnian carbonate platform during the Early to Late Frasnian time (falsiovalis to rhenana superzones) with one of the causes being the Late Givetian major rift pulse; (U2) occurrence of thin-bedded red nodular and cephalopod-bearing limestones with local lithoclastic grainstone intercalations corresponding to a significant deepening of the area and the progressive withdrawal of sedimentary influxes toward the basin, in relation with Late Frasnian sea-level rise. MS and geochemical analyses were also performed along the Freikofel section and demonstrate the inherent parallel link existing between variation in MS values and proxy for terrestrial input. Interpretation of MS in terms of palaeoenvironmental processes reflects that even though distality remains the major parameter influencing MS values, carbonate production and water agitation also play an important role.
DOI
10.1007/s00531-013-0969-2
WOS
WOS:000331640800009
Archivio
http://hdl.handle.net/11368/2950042
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84894249164
http://link.springer.com/article/10.1007/s00531-013-0969-2
Diritti
metadata only access
Soggetti
  • Carbonate platform

  • Cellon-Kellerwand Nap...

  • Magnetic susceptibili...

  • Geochemistry

  • Stable carbon isotope...

  • Mid–Late Devonian

Scopus© citazioni
11
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
11
Data di acquisizione
Mar 28, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback