Logo del repository
  1. Home
 
Opzioni

Calibration, Compensation, Parameter Estimation, and Uncertainty Quantification for Nanoelectrode Array Biosensors

Andrea Cossettini
•
Paolo Scarbolo
•
Jose A. Morales Escalante
altro
Luca Selmi
2018
  • conference object

Abstract
This paper presents the use of a statistical approach to estimate physical/electrochemical parameters of impedance spectroscopy experiments performed with a realistic nanoelectrodes array biosensor platform. The Bayesian estimation methodology is based on the combination of nanobiosensor simulations, performed with the ENBIOS tool, with Markov-Chain Monte Carlo (MCMC) analyses. A simple 1D electrode-electrolyte geometry is first considered as a validation test case, allowing the accurate estimation of Stern layer permittivity and salt concentration, as set by a reference analytical model. Then, full 3D analyses of the nanoelectrodes’ array system are performed in order to estimate a number of relevant parameters for measurements in electrolyte. Furthermore, moving to more challenging test cases, size/permittivity of microparticles suspended in electrolyte will also be discussed. This methodology allows for the determination of impedance spectroscopy data parameters, and quantification of parameter uncertainties in these multi-variable detection problems. It is thus a very promising approach in order to improve the precision of biosensor measurement predictions, which are intrinsically affected by many parameters.
Archivio
http://hdl.handle.net/11390/1132047
https://www.siam.org/meetings/uq18/uq18_abstracts.pdf
Diritti
closed access
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback