Logo del repository
  1. Home
 
Opzioni

Aberrant ERK 1/2 complex activation and localization in scrapie-infected GT1-1 cells

DIDONNA A
•
Legname, Giuseppe
2010
  • journal article

Periodico
MOLECULAR NEURODEGENERATION
Abstract
BACKGROUND: Fatal neurodegenerative disorders such as Creutzfeldt-Jakob and Gerstmann-Sträussler-Scheinker diseases in humans, scrapie and bovine spongiform encephalopathy in animals, are characterized by the accumulation in the brain of a pathological form of the prion protein (PrP) denominated PrPSc. The latter derives from the host cellular form, PrPC, through a process whereby portions of its alpha-helical and coil structures are refolded into beta-sheet structures. RESULTS: In this work, the widely known in vitro model of prion replication, hypothalamic GT1-1 cell line, was used to investigate cellular and molecular responses to prion infection. The MAP kinase cascade was dissected to assess the phosphorylation levels of src, MEK 1/2 and ERK 1/2 signaling molecules, both before and after prion infection. Our findings suggest that prion replication leads to a hyper-activation of this pathway. Biochemical analysis was complemented with immunofluorescence studies to map the localization of the ERK complex within the different cellular compartments. We showed how the ERK complex relocates in the cytosol upon prion infection. We correlated these findings with an impairment of cell growth in prion-infected GT1-1 cells as probed by MTT assay. Furthermore, given the persistent urgency in finding compounds able to cure prion infected cells, we tested the effects on the ERK cascade of two molecules known to block prion replication in vitro, quinacrine and Fab D18. We were able to show that while these two compounds possess similar effects in curing prion infection, they affect the MAP kinase cascade differently. CONCLUSIONS: Taken together, our results help shed light on the molecular events involved in neurodegeneration and neuronal loss in prion infection and replication. In particular, the combination of chronic activation and aberrant localization of the ERK complex may lead to a lack of essential neuroprotective and survival factors. Interestingly, these data seem to define some common traits with other neurodegenerative disorders such as, for example, Alzheimer's disease.
DOI
10.1186/1750-1326-5-29
WOS
WOS:000282484100001
Archivio
http://hdl.handle.net/20.500.11767/14997
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-77955296897
Diritti
open access
Scopus© citazioni
13
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
13
Data di acquisizione
Mar 28, 2024
Visualizzazioni
1
Data di acquisizione
Jun 8, 2022
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback