Logo del repository
  1. Home
 
Opzioni

Graphene nanoribbon-TiO2-quantum dots hybrid photoanode to boost the performance of photoelectrochemical for hydrogen generation

Akilimali R.
•
Selopal G. S.
•
Benetti D.
altro
Rosei F.
2020
  • journal article

Periodico
CATALYSIS TODAY
Abstract
We report the effect of incorporation of graphene nanoribbons (GNR) into a TiO2 mesoporous film sensitized with colloidal CdSe/CdS core/shell quantum dots (QDs) on the efficiency and long-term stability of a photoelectrochemical (PEC) cell for hydrogen (H2) generation. The GNR-TiO2 hybrid photoanodes were prepared by using simple, low-cost and large-area scalable doctor-blade method. The presence of GNR in the hybrid photoanode was confirmed by ultraviolet-visible absorption measurements, scanning electron microscopy and Raman spectroscopy. Our results demonstrate that an optimum loading of 0.02 wt% GNR increases the photocurrent density (at 0.8 V vs RHE) of the PEC device up to 5.51 mA/cm2, which is 30% higher than that of the control device. This improvement in photocurrent density can be attributed to enhanced electron transport (reduced charge transport resistance) in GNR-TiO2 hybrid anodes as confirmed by electrochemical impedance spectroscopy. In addition, PEC cells based on GNRs-TiO2/QDs hybrid photoanode maintain ∼65% of the initial photocurrent density after 7200 s of continuous one sun illumination, which is 15% higher than PEC cell based on a standard TiO2/QDs photoanode. Our findings offer a simple, large area scalable and low-cost approach to fabricate photoanode for high-performance optoelectronic devices, such as improving the performance of PEC cells for hydrogen generation.
DOI
10.1016/j.cattod.2018.10.052
WOS
WOS:000491876500020
Archivio
https://hdl.handle.net/11368/3046241
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85055870170
https://www.sciencedirect.com/science/article/pii/S0920586118313415?via=ihub
Diritti
open access
license:copyright editore
license:creative commons
license uri:iris.pri02
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/request-item?handle=11368/3046241
Soggetti
  • Electron transport

  • GNR-TiO

  • 2

  • hybrid photoanode

  • Graphene nanoribbon

  • Hydrogen generation

  • Photoelectrochemical

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback