Logo del repository
  1. Home
 
Opzioni

Density functional theory studies on copper phenanthroline complexes

Robertazzi, A.
•
Magistrato, A.
•
de Hoog, P.
altro
Reedijk, J.
2007
  • journal article

Periodico
INORGANIC CHEMISTRY
Abstract
Density functional theory calculations have been employed to investigate the role of structural properties of copper phenanthroline complexes for DNA-cleavage activity. Structural changes imposed on the coordination geometries of Cu(phen)(2)(+,2+) (phen = 1,10-phenanthroline) linked by a serinol bridge (abbreviated as Clip) were studied, as well as their energetic profiles. Our calculations show that structures of these copper complexes (in this work named as clipped complexes) strongly depend on the position of the link, rather than on the copper oxidation state. Ionization energies slightly differ among the three selected complexes, while inner-sphere reorganization energies more markedly depend on the serinol link. However, the relative rates of the redox reaction of Cu(phen)(2), Cu(2-Clip-phen), and Cu(3-Clip-phen) were found not to correlate with their relative DNA-cleavage activity experimentally observed. Thus, the serinol link mainly affects the structural properties of copper phenanthroline complexes rather than their electronic properties. Docking simulations of clipped and nonclipped Cu(I) phenanthroline complexes on a DNA 16mer, d[CGCTCAACTGTGATAC](2), were finally performed to assess how different structural properties could affect the formation of DNA adducts. This analysis revealed that the most stable adducts of Cu(phen)(2)(+) and Cu(3-Clip-phen)(+) with DNA bind in the minor groove, whereas Cu(2-Clip-phen)(+) binds preferentially into the major groove.
DOI
10.1021/ic0618908
WOS
WOS:000248011300015
Archivio
http://hdl.handle.net/20.500.11767/33218
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-34547684040
Diritti
metadata only access
Scopus© citazioni
45
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
43
Data di acquisizione
Mar 22, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback