Logo del repository
  1. Home
 
Opzioni

Environmental impacts of milk production and processing in the Eastern Alps: A “cradle-to-dairy gate” LCA approach

Berton M.
•
Bovolenta S.
•
Corazzin M.
altro
Sturaro E.
2021
  • journal article

Periodico
JOURNAL OF CLEANER PRODUCTION
Abstract
This study aimed to evaluate the environmental footprint and feed energy conversion ratio of Alpine dairy chains in the Eastern Alps, taking into account both the milk production and dairy processing phases, and to identify farm management features useful for targeting mitigation measures in the production phase. A cradle-to-farm gate Life Cycle Assessment model that included herd and manure management, on-farm feedstuff production and purchased feedstuffs and materials (dairy farm), and production inputs and dairy outputs (dairy processing) was applied to 75 farms (10 dairies). As functional units, we used 1 kg fat- and protein-corrected milk (FPCM) and 1 m2 of agricultural land, to account for production intensity and land managed by alpine farms, respectively. Impact categories (CML-IA and CED methods, background data from Ecoinvent database) assessed were global warming (GWP), GWP plus land-use change (GWP_LUC), acidification (AP) and eutrophication (EP) potentials, cumulative energy demand (CED) and land occupation (LO). Feed energy conversion ratio (whole diet - ECR; potentially human-edible portion of the diet - HeECR) was computed as the ratio between gross energy in feeds and that in milk. Mean ECR was 6.6 ± 0.5 MJ feed/MJ milk, of which only 8% derived from potentially human-edible feedstuffs. For 1 kg of FPCM at the dairy farm, GWP averaged 1.19 kg CO2-eq, GWP_LUC 1.31 kg CO2-eq, AP 17.3 g SO2-eq and EP 6.0 g PO4-eq (coefficients of variation, CV, ranged 17–21%), whereas mean CED was 2.7 MJ and LO 2.1 m2/y (CVs: 40–46%). When dairy processing was included, the impact values for 1 kg of dairy product were from 8 to 13 times greater than those obtained for 1 kg FPCM. Based on the outcomes of a principal component analysis, the farm management features most related to impacts and feed ratios were milk yield (MY, for the impacts per unit of milk and ECR), stocking rate (SR, for the impacts per unit of area), and percentages of concentrates (C, for GWP_LUC and HeECR). Step-wise analysis evidenced that strategies aiming to decrease the environmental footprint referred to milk and managed area at the same time and to improve the feed energy conversion ratios should include MY, SR and C jointly. These issues are particularly important for the sustainability of mountain farming systems, which need to create a virtuous link with local forage resources and the territory.
DOI
10.1016/j.jclepro.2021.127056
WOS
WOS:000655704400004
Archivio
http://hdl.handle.net/11390/1205407
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85104379815
Diritti
open access
Soggetti
  • Alpine dairy system

  • Cattle

  • Life cycle assessment...

  • Mitigation strategies...

Scopus© citazioni
4
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
17
Data di acquisizione
Mar 25, 2024
Visualizzazioni
18
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback