Logo del repository
  1. Home
 
Opzioni

The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation

C. Scannapieco
•
M. Wadepuhl
•
O. H. Parry
altro
R. Woods
2012
  • journal article

Periodico
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Abstract
We compare the results of various cosmological gas-dynamical codes used to simulate the formation of a galaxy in the Λ cold dark matter structure formation paradigm. The various runs (13 in total) differ in their numerical hydrodynamical treatment [smoothed particle hydrodynamics (SPH), moving mesh and adaptive mesh refinement] but share the same initial conditions and adopt in each case their latest published model of gas cooling, star formation and feedback. Despite the common halo assembly history, we find large code-to-code variations in the stellar mass, size, morphology and gas content of the galaxy at z= 0, due mainly to the different implementations of star formation and feedback. Compared with observation, most codes tend to produce an overly massive galaxy, smaller and less gas rich than typical spirals, with a massive bulge and a declining rotation curve. A stellar disc is discernible in most simulations, although its prominence varies widely from code to code. There is a well-defined trend between the effects of feedback and the severity of the disagreement with observed spirals. In general, models that are more effective at limiting the baryonic mass of the galaxy come closer to matching observed galaxy scaling laws, but often to the detriment of the disc component. Although numerical convergence is not particularly good for any of the codes, our conclusions hold at two different numerical resolutions. Some differences can also be traced to the different numerical techniques; for example, more gas seems able to cool and become available for star formation in grid-based codes than in SPH. However, this effect is small compared to the variations induced by different feedback prescriptions. We conclude that state-of-the-art simulations cannot yet uniquely predict the properties of the baryonic component of a galaxy, even when the assembly history of its host halo is fully specified. Developing feedback algorithms that can effectively regulate the mass of a galaxy without hindering the formation of high angular momentum stellar discs remains a challenge.
DOI
10.1111/j.1365-2966.2012.20993.x
WOS
WOS:000305070900058
Archivio
http://hdl.handle.net/11368/2555704
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84862141353
Diritti
metadata only access
Soggetti
  • methods: numerical

  • galaxies: evolution

  • galaxies: formation

  • cosmology: theory

Scopus© citazioni
349
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
375
Data di acquisizione
Mar 23, 2024
Visualizzazioni
9
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback