Logo del repository
  1. Home
 
Opzioni

Microplastics and leaf litter decomposition dynamics: New insights from a lotic ecosystem (Northeastern Italy)

Marco Bertoli
•
Monia Renzi
•
Paolo Pastorino
altro
Elisabetta Pizzul
2023
  • journal article

Periodico
ECOLOGICAL INDICATORS
Abstract
Microplastics represent one of the main environmental concerns of our time and their presence is well known in all freshwater ecosystems. However, there is still a lack of knowledge about the interference with some environmental dynamics, such as the leaf litter decomposition, which represents a key process in freshwater ecosystems. The work presented herein analyzed the leaf litter decomposition in a lotic ecosystem, in relation to water physicochemical parameters, macrobenthic invertebrate functional feeding guilds (FFG) and, as a novelty, the microplastics as additional factor. Physicochemical features were monitored every 15 days for one year. Phragmites australis decomposition rates were investigated during four seasons (summer, autumn, winter, and spring) using the leaf bag technique. Microplastic items were also collected within the leaf bags (used as retaining tool) and within macrobenthic invertebrate colonizers. Shredders were the most contaminated FFG in summer and autumn, while scrapers showed high microplastics levels in autumn and winter. Decomposition rates significantly differed among seasons (0.007 < k < 0.022) and water temperature was the main driver of the decomposition dynamics (relative importance = 70.3 %), positively affecting the decay rates, followed by pH (9.7 %), which showed a negative contribution. Microplastics showed a negative effect (3.1 %), with a relative importance similar and opposite to that observed for the shredders (3.9 %), which value was similar to those recorded for scarpers (2.7 %). This study represents a field investigation regarding the microplastic effects on the organic matter decomposition rates in freshwater environments carried out directly on field. Our results provide new insights about the microplastic interference on environmental dynamics and could represent a starting point for further studies.
DOI
10.1016/j.ecolind.2023.109995
WOS
WOS:000947018600001
Archivio
https://hdl.handle.net/11368/3042183
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85147853899
https://www.sciencedirect.com/science/article/pii/S1470160X23001371
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/bitstream/11368/3042183/1/59 Bertoli et al_2023_Vipacco_1.pdf
Soggetti
  • Decomposition rate

  • Leaf bag

  • Litter breakdown

  • Macroinvertebrate

  • Pollution

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback