Since glucagon can hyperpolarize hepatic plasma membrane and stimulate biliary bile acid secretion in vitro, we studied the effect of glucagon on taurocholate uptake and its relationship to plasma membrane potential in isolated rat hepatocytes. [14C]Taurocholate uptake was linear through 1 min and contained a saturable sodium-dependent and a nonsaturable sodium-independent component, Km of taurocholate uptake by the sodium-dependent system was 18.4 μM. Hill coefficient for Na+ was 2.59 and for taurocholate was 1.1, suggesting that the stoichiometry is 2 Na+:1 bile acid. Stimulation of taurocholate uptake by glucagon was limited to the sodium-dependent component, detected within 5 min of hormone exposure, and was maximum at 30 min. Glucagon, from 10−8 to 10−5 M, stimulated taurocholate uptake and hyperpolarized concurrently the plasma membrane potential. Because valinomycin produced a dose-related depolarization of plasma membrane potential, this agent was used to counteract the effects of glucagon. With 10−6 M glucagon, valinomycin (10−10 M) depolarized membrane potential from -35.50 to -28.00 mV and inhibited taurocholate uptake from 60% above the control rate to 5% below. These data strongly suggest that taurocholate uptake by isolated hepatocytes is an electrogenic process, and its stimulation by glucagon may be mediated by changes in plasma membrane potential.