Logo del repository
  1. Home
 
Opzioni

Imprinting Persistent Currents in Tunable Fermionic Rings

G. Del Pace
•
K. Xhani
•
A. Muzi Falconi
altro
G. Roati
2022
  • journal article

Periodico
PHYSICAL REVIEW. X
Abstract
Persistent currents in annular geometries have played an important role in disclosing the quantum phase coherence of superconductors and mesoscopic electronic systems. Ultracold atomic gases in multiply connected traps also exhibit long-lived supercurrents and have attracted much interest both for fundamental studies of superfluid dynamics and as prototypes for atomtronics circuits. Here, we report on the realization of supercurrents in homogeneous, tunable fermionic rings. We gain exquisite, rapid control over quantized persistent currents in all regimes of the BCS-BEC crossover through a universal phase-imprinting technique, attaining on-demand circulations w as high as 9. High-fidelity readout of the superfluid circulation state is achieved by exploiting an interferometric protocol, which also yields local information about the superfluid phase around the ring. In the absence of externally introduced perturbations, we find the induced metastable supercurrents to be as long-lived as the atomic sample. Conversely, we trigger and inspect the supercurrent decay by inserting a single small obstacle within the ring. For circulations higher than a critical value, the quantized current is observed to dissipate via the emission of vortices, i.e., quantized phase slips, which we directly image, in good agreement with numerical simulations. The critical circulation at which the superflow becomes unstable is found to depend starkly on the interaction strength, taking its maximum value for the unitary Fermi gas. Our results demonstrate fast and accurate control of quantized collective excitations in a macroscopic quantum system and establish strongly interacting fermionic superfluids as excellent candidates for atomtronics applications.
DOI
10.1103/physrevx.12.041037
WOS
WOS:000908397800002
Archivio
https://hdl.handle.net/11368/3038241
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85145359434
https://journals.aps.org/prx/supplemental/10.1103/PhysRevX.12.041037
Diritti
open access
license:creative commons
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3038241/1/PhysRevX.12.041037.pdf
Soggetti
  • Fermi gase

  • Fermionic condensate

  • BEC-BCS crossover

  • Feshbach resonance

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback