Logo del repository
  1. Home
 
Opzioni

The micrometeorite flux to Earth during the Frasnian-Famennian transition reconstructed in the Coumiac GSSP section, France

Birger Schmitz
•
Raimund Feist
•
Matthias M. M. Meier
altro
Fredrik Terfelt
2019
  • journal article

Periodico
EARTH AND PLANETARY SCIENCE LETTERS
Abstract
We have reconstructed the distribution of extraterrestrial chrome spinels in a marine limestone section across the Frasnian-Famennian stratotype section at Coumiac in southern France, providing the first insights on the types of micrometeorites and meteorites that fell on Earth at this time. The data can test whether the small cluster of roughly coeval, large impact structures is related to an asteroid breakup and shower with possible bearings also on the late 26 Devonian biodiversity crisis. A total of ~180 extraterrestrial spinel grains (>32 microns) were recovered from 957 kg of rock. Noble-gas measurements of individual grains show high solar-wind content, implying an origin from decomposed micrometeorites. Element analyses indicate a marked dominance of ordinary chondritic over achondritic grains, similar to the recent flux. The relation between H, L and LL meteorites is ~29-58-13%, similar to the late Silurian flux, ~31-63-6%, but different from the distribution, ~45-45-10%, in the recent and the Cretaceous flux. Our data show no indication of a generally enhanced late Devonian micrometeorite flux that would accompany an asteroid shower. However, in a single limestone bed that formed immediately before the Upper Kellwasser horizon, that represents the main end-Frasnian species-turnover event, we found an enrichment of ~10 ordinary chondritic grains (>63 microns) per 100 kg of rock, compared to the ~1-3 grains per 100 kg that characterize background. The anomalously abundant grains are of mixed H, L and LL types and may be related to an enhanced flux of extraterrestrial dust during postulated minima in both the 405 ka and 2.4 Ma Earth-orbit eccentricity cycles at the onset of the Upper Kellwasser event. In the present solar system the dust accretion at Earth is the highest at eccentricity minima because of the spatial distribution of dust bands of the zodiacal cloud. Besides this small grain anomaly the data here and in previous studies support a stable meteorite flux through the late Silurian and Devonian, in contrast to the mid-Ordovician, when achondritic meteorites that are rare on Earth today were common, followed by the influx of a flood of debris related to the breakup of the L-chondrite parent body. Our accumulated data for six time windows through the Phanerozoic indicate that the ordinary chondrites make up a major fraction in the meteorite flux since at least the mid-Ordovician. We note that the sources in the asteroid belt of the H and L3 meteorites, the two most common types of meteorites today and through much of the Phanerozoic, remain elusive.
DOI
10.1016/j.epsl.2019.06.025
WOS
WOS:000478708900024
Archivio
http://hdl.handle.net/11368/2945008
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85068961684
https://www-sciencedirect-com.units.idm.oclc.org/science/article/pii/S0012821X19303644
Diritti
open access
FVG url
https://arts.units.it/request-item?handle=11368/2945008
Soggetti
  • extraterrestrial chro...

  • asteroid shower

  • meteorite flux

  • Frasnian-Famennian bo...

Web of Science© citazioni
10
Data di acquisizione
Mar 23, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback