Logo del repository
  1. Home
 
Opzioni

Support Vector Machines for Robust Trajectory Clustering

PICIARELLI, Claudio
•
MICHELONI, Christian
•
FORESTI, Gian Luca
2008
  • conference object

Abstract
Many event analysis systems are based on the detection of uncommon feature patterns that could be associated to anomalous events; the uncommon patterns are identified by comparison with a "normality model" describing the previously acquired data. In this work we propose an anomaly detection system based on trajectory clustering with single-class support vector machines. However, SVM parameter tuning would require an a-priori estimate of the number of outlier trajectories in the training data, which is unknown. We here propose a technique for automatic estimation of the number of outliers, thus avoiding the arbitrary choice of constant tuning parameters
DOI
10.1109/ICIP.2008.4712311
WOS
WOS:000265921401152
Archivio
http://hdl.handle.net/11390/882283
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-69949144682
Diritti
metadata only access
Scopus© citazioni
0
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
0
Data di acquisizione
Mar 27, 2024
Visualizzazioni
3
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback