This paper presents a large-scale application of a heuristic timetabling algorithm on a mesoscopic description of the railway network infrastructures.We consider a mesoscopic model as it allows a significantly higher accuracy compared to the macroscopic models used in many scientific works. Specifically our mesoscopic model allows an estimation of the headway times and of the conflicts on lines and stations as well as a calculation of running times and time-losses performed with the same detail enabled by simulation models. In addition, in order to maximize the accuracy in the definition of the timetable, various parameters can be defined for each train, including the buffer times, the priority and the allowances.The model is applied to the rail network of the North-East of Italy. It is tested under different demand conditions, for example considering an increase of the demand for freight slots or a different structure of regional services. Moreover, it is used to obtain a rough estimate of the maximum capacity for freight trains combined to fixed passenger services and the effects of infrastructure improvements.