Logo del repository
  1. Home
 
Opzioni

The non-equivariant coherent-constructible correspondence and a conjecture of King

Scherotzke S.
•
Sibilla N.
2016
  • journal article

Periodico
SELECTA MATHEMATICA
Abstract
The coherent-constructible (CC) correspondence is a relationship between coherent sheaves on a toric variety X and constructible sheaves on a real torus $$mathbb {T}$$T. This was discovered by Bondal and established in the equivariant setting by Fang, Liu, Treumann, and Zaslow. In this paper, we explore various aspects of the non-equivariant CC correspondence. Also, we use the non-equivariant CC correspondence to prove the existence of tilting complexes in the derived categories of toric orbifolds satisfying certain combinatorial conditions. This has applications to a conjecture of King.
DOI
10.1007/s00029-015-0193-y
WOS
WOS:000367615000011
Archivio
http://hdl.handle.net/20.500.11767/117717
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84952982718
Diritti
open access
license:non specificato
Soggetti
  • 14M25

  • 32S60

  • 53D37

  • Settore MAT/03 - Geom...

Scopus© citazioni
7
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
6
Data di acquisizione
Mar 18, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback