Logo del repository
  1. Home
 
Opzioni

Role of E2F1–Cyclin E1-Cyclin E2 Circuit in Human Coronary Smooth Muscle Cell Proliferation and Therapeutic Potential of Its Downregulation by siRNAs

DAPAS, BARBARA
•
FARRA, ROSSELLA
•
GRASSI, Mario
altro
GRASSI, GABRIELE
2009
  • journal article

Periodico
MOLECULAR MEDICINE
Abstract
Aberrant coronary vascular smooth muscle cell (CSMC) proliferation is a pivotal event underlying intimal hyperplasia, a phenomenon impairing the long-term efficacy of bypass surgery and angioplasty procedures. Consequently research has become focused on efforts to identify molecules that are able to control CSMC proliferation. We investigated downregulation of CSMC growth by small interfering RNAs (siRNAs) targeted against E2F1, cyclin E1, and cyclin E2 genes, whose contribution to CSMC proliferation is only now being recognized. Chemically synthesized siRNAs were delivered by two different transfection reagents to asynchronous and synchronous growing human CSMCs cultivated either in normo- or hyperglycemic conditions. The depletion of each of the three target genes affected the expression of the other two genes, demonstrating a close regulatory control. The clearest effects associated with the inhibition of the E2F1–cyclin E1/E2 circuit were the reduction in the phosphorylation levels of the retinoblastoma protein pRB and a decrease in the amount of cyclin A2. At the phenotypic level the downmodulation of CSMC proliferation resulted in a decrease of S phase matched by an increase of G1-G0 phase cell amounts. The antiproliferative effect was cell–donor and transfectant independent, reversible, and effective in asynchronous and synchronous growing CSMCs. Importantly, it was also evident in hyperglycemia, a condition that underlies diabetes. No significant aspecific cytotoxicity was observed. Our data demonstrate the interrelation among E2F1–cyclin E1-cyclin E2 and the pivotal role this circuit exerts in CSMC proliferation. Additionally, our work validates the concept of utilizing anti–E2F1–cyclin E1-cyclin E2 siRNAs to develop a potential novel therapy to control intimal hyperplasia.
DOI
10.2119/molmed.2009.00030
WOS
WOS:000276043900002
Archivio
http://hdl.handle.net/11368/2296926
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-70149095010
Diritti
metadata only access
Soggetti
  • siRNA

  • cyclin E

  • E2F1

  • VSMC

  • restenosis

Web of Science© citazioni
43
Data di acquisizione
Mar 9, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback