Logo del repository
  1. Home
 
Opzioni

Baryon content of massive galaxy clusters at 0.57 < z < 1.33

Chiu, I.
•
Mohr, J.
•
McDonald, M.
altro
Zenteno, A.
2016
  • journal article

Periodico
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Abstract
We study the stellar, brightest cluster galaxy (BCG) and intracluster medium (ICM) masses of 14 South Pole Telescope (SPT) selected galaxy clusters with median redshift z = 0.9 and mass M500 = 6 × 1014 M☉. We estimate stellar masses for each cluster and BCG using six photometric bands, the ICM mass using X-ray observations and the virial masses using the SPT Sunyaev-Zel'dovich effect signature. At z = 0.9, the BCG mass M_{star }^{BCG} constitutes 0.12 ± 0.01 per cent of the halo mass for a 6 × 1014 M☉ cluster, and this fraction falls as M_{500}^{-0.58± 0.07}. The cluster stellar mass function has a characteristic mass M0 = 1011.0 ± 0.1 M☉, and the number of galaxies per unit mass in clusters is larger than in the field by a factor of 1.65 ± 0.20. We combine our SPT sample with previously published samples at low redshift and correct to a common initial mass function and for systematic virial mass differences. We then explore mass and redshift trends in the stellar fraction f⋆, the ICM fraction fICM, the collapsed baryon fraction fc and the baryon fraction fb. At a pivot mass of 6 × 1014 M☉ and redshift z = 0.9, the characteristic values are f⋆ = 1.1 ± 0.1 per cent, fICM = 9.6 ± 0.5 per cent, fc = 10.7 ± 1.1 per cent and fb = 10.7 ± 0.6 per cent. These fractions all vary with cluster mass at high significance, with higher mass clusters having lower f⋆ and fc and higher fICM and fb. When accounting for a 15 per cent systematic virial mass uncertainty, there is no statistically significant redshift trend at fixed mass. Our results support the scenario where clusters grow through accretion from subclusters (higher f⋆, lower fICM) and the field (lower f⋆, higher fICM), balancing to keep f⋆ and fICM approximately constant since z ∼ 0.9.
DOI
10.1093/mnras/stv2303
WOS
WOS:000368005900043
Archivio
http://hdl.handle.net/11368/2962594
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84954422819
https://academic.oup.com/mnras/article/455/1/258/984806
Diritti
closed access
license:copyright editore
FVG url
https://arts.units.it/request-item?handle=11368/2962594
Soggetti
  • Cluster

  • cluster

  • Evolution

  • Galaxie

  • galaxie

  • Galaxy

  • General

  • Large-scale structure...

  • X-ray

  • Astronomy and Astroph...

  • Space and Planetary S...

Web of Science© citazioni
47
Data di acquisizione
Mar 26, 2024
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback