Logo del repository
  1. Home
 
Opzioni

Euclid preparation

S. E. van Mierlo
•
K. I. Caputi
•
M. Ashby
altro
M. Viel
2022
  • journal article

Periodico
ASTRONOMY & ASTROPHYSICS
Abstract
Context. The Euclid mission is expected to discover thousands of z > 6 galaxies in three deep fields, which together will cover a ∼50 deg2 area. However, the limited number of Euclid bands (four) and the low availability of ancillary data could make the identification of z > 6 galaxies challenging. Aims: In this work we assess the degree of contamination by intermediate-redshift galaxies (z = 1-5.8) expected for z > 6 galaxies within the Euclid Deep Survey. Methods: This study is based on ∼176 000 real galaxies at z = 1-8 in a ∼0.7 deg2 area selected from the UltraVISTA ultra-deep survey and ∼96 000 mock galaxies with 25.3 ≤ H < 27.0, which altogether cover the range of magnitudes to be probed in the Euclid Deep Survey. We simulate Euclid and ancillary photometry from fiducial 28-band photometry and fit spectral energy distributions to various combinations of these simulated data. Results: We demonstrate that identifying z > 6 galaxies with Euclid data alone will be very effective, with a z > 6 recovery of 91% (88%) for bright (faint) galaxies. For the UltraVISTA-like bright sample, the percentage of z = 1-5.8 contaminants amongst apparent z > 6 galaxies as observed with Euclid alone is 18%, which is reduced to 4% (13%) by including ultra-deep Rubin (Spitzer) photometry. Conversely, for the faint mock sample, the contamination fraction with Euclid alone is considerably higher at 39%, and minimised to 7% when including ultra-deep Rubin data. For UltraVISTA-like bright galaxies, we find that Euclid (IE − YE) > 2.8 and (YE − JE) < 1.4 colour criteria can separate contaminants from true z > 6 galaxies, although these are applicable to only 54% of the contaminants as many have unconstrained (IE − YE) colours. In the best scenario, these cuts reduce the contamination fraction to 1% whilst preserving 81% of the fiducial z > 6 sample. For the faint mock sample, colour cuts are infeasible; we find instead that a 5σ detection threshold requirement in at least one of the Euclid near-infrared bands reduces the contamination fraction to 25%.
DOI
10.1051/0004-6361/202243950
WOS
WOS:000872751400008
Archivio
https://hdl.handle.net/11368/3038399
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85143052751
https://www.aanda.org/articles/aa/full_html/2022/10/aa43950-22/aa43950-22
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3038399/1/PUB.PDF
Soggetti
  • galaxies: high-redshi...

  • galaxies: evolution

  • galaxies: photometry

  • Astrophysics - Astrop...

  • Astrophysics - Cosmol...

  • Astrophysics - Instru...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback