Logo del repository
  1. Home
 
Opzioni

Uncertainties in νp-process nucleosynthesis from Monte Carlo variation of reaction rates

Nishimura N.
•
Rauscher T.
•
Hirschi R.
altro
Frohlich C.
2019
  • journal article

Periodico
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Abstract
It has been suggested that a νp-process can occur when hot, dense, and proton-rich matter is expanding within a strong flux of antineutrinos. In such an environment, proton-rich nuclides can be produced in sequences of proton captures and (n, p) reactions, where the free neutrons are created in situ by νe + p → n + e+ reactions. The detailed hydrodynamic evolution determines where the nucleosynthesis path turns off from N = Z line and how far up the nuclear chart it runs. In this work, the uncertainties on the final isotopic abundances stemming from uncertainties in the nuclear reaction rates were investigated in a large-scale Monte Carlo approach, simultaneously varying more than 10 000 reactions. A large range of model conditions was investigated because a definitive astrophysical site for the νp-process has not yet been identified. The present parameter study provides, for each model, identification of the key nuclear reactions dominating the uncertainty for a given nuclide abundance. As all rates appearing in the νp-process involve unstable nuclei, and thus only theoretical rates are available, the final abundance uncertainties are larger than those for nucleosynthesis processes closer to stability. Nevertheless, most uncertainties remain below a factor of 3 in trajectories with robust nucleosynthesis. More extreme conditions allow production of heavier nuclides but show larger uncertainties because of the accumulation of the uncertainties in many rates and because the termination of nucleosynthesis is not at equilibrium conditions. It is also found that the solar ratio of the abundances of 92Mo and 94Mo could be reproduced within uncertainties.
DOI
10.1093/mnras/stz2104
WOS
WOS:000489292800105
Archivio
https://hdl.handle.net/11368/3039380
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85083251908
https://academic.oup.com/mnras/article/489/1/1379/5543227
Diritti
open access
license:copyright editore
license uri:iris.pri02
FVG url
https://arts.units.it/bitstream/11368/3039380/2/stz2104.pdf
Soggetti
  • Abundance

  • Neutrino

  • Nuclear reaction

  • Nucleosynthesi

  • Stars abundance

  • Stars neutron

  • Supernovae general

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback