Logo del repository
  1. Home
 
Opzioni

Sustainability analysis of hydrogen production processes

Mio A.
•
Barbera E.
•
Massi Pavan A.
altro
Fermeglia M.
2024
  • journal article

Periodico
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Abstract
Hydrogen is a versatile energy carrier and storage medium that is expected to have a key role in the energy transition, as it can be employed in a variety of applications. Hydrogen can be produced from different feedstocks and using different processes. Based on the production technology used, hydrogen is conventionally identified by a color. In this work, we compare different hydrogen generation processes: (i) green hydrogen, obtained by electrolysis of water using electricity from floating photovoltaic platforms, (ii) grid hydrogen, also obtained by electrolysis but using grid electricity, (iii) grey hydrogen, produced from natural gas using steam reforming and (iv) blue hydrogen, which is similar to grey hydrogen, but uses hot potassium carbonate as the solvent for carbon capture and storage. The paper considers the production of hydrogen necessary for 2 trips per day of amedium size ferryboat to navigate full electric for 7 h in the Adriatic Sea. Process simulation is applied to solvematerial and energy balances for each process investigated, as well as for the evaluation of capital and operating costs. Process simulation outcomes are then used to estimate three key performance indicators focused on energetic, economic, and environmental sustainability issues: the energy return on energy invested, the levelized cost of hydrogen, and the life cycle assessment. The energy indicator for grid and green hydrogen has a value of 13.39e14.29, versus a value of 4.59e5.48 for other hydrogen production methods from natural gas. The cost for green hydrogen is slightly higher (8.76) compared to the blue hydrogen (5.50) however green hydrogen has a much lower impact to the environment. Considering the combined results obtained by all the indicators, it is concluded that the most sustainable hydrogen production method is green hydrogen.
DOI
10.1016/j.ijhydene.2023.06.122
WOS
WOS:001141520400001
Archivio
https://hdl.handle.net/11368/3053199
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85163886505
https://www.sciencedirect.com/science/article/pii/S0360319923029816
Diritti
open access
license:copyright editore
license:creative commons
license uri:iris.pri02
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/request-item?handle=11368/3053199
Soggetti
  • Hydrogen production

  • Ferryboat

  • Floating photovoltaic...

  • EROEI

  • LCOH

  • LCA

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback