Logo del repository
  1. Home
 
Opzioni

E-XQR-30: The evolution of Mg II, C II, and O I across 2 < z < 6

Sebastian, Alma Maria
•
Ryan-Weber, Emma
•
Davies, Rebecca L
altro
Gallerani, Simona
2024
  • journal article

Periodico
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Abstract
Intervening metal absorbers in quasar spectra at z > 6 can be used as probes to study the chemical enrichment of the Universe during the Epoch of Reionization. This work presents the comoving line densities (dn/dX) of low-ionization absorbers, namely, Mg II (2796 Å), C II (1334 Å), and O I (1302 Å) across 2 < z < 6 using the E-XQR-30 metal absorber catalogue prepared from 42 XSHOOTER quasar spectra at 5.8 < z < 6.6. Here, we analyse 280 Mg II (1.9 < z < 6.4), 22 C II (5.2 < z < 6.4), and 10 O I (5.3 < z < 6.4) intervening absorbers, thereby building up on previous studies with improved sensitivity of 50 per cent completeness at an equivalent width of W > 0.03 Å. For the first time, we present the comoving line densities of 131 weak (W < 0.3 Å) intervening Mg II absorbers at 1.9 < z < 6.4 which exhibit constant evolution with redshift similar to medium (0.3 < W < 1.0 Å) absorbers. However, the cosmic mass density of Mg II - dominated by strong Mg II systems - traces the evolution of global star formation history from redshift 1.9 to 5.5. E-XQR-30 also increases the absorption path-length by a factor of 50 per cent for C II and O I whose line densities show a rising trend towards z > 5, in agreement with previous works. In the context of a decline in the metal enrichment of the Universe at z > 5, the overall evolution in the incidence rates of absorption systems can be explained by a weak - possibly soft fluctuating - ultraviolet background. Our results, thereby, provide evidence for a late reionization continuing to occur in metal-enriched and therefore, biased regions in the Universe.
DOI
10.1093/mnras/stae789
WOS
WOS:001206329800011
Archivio
https://hdl.handle.net/11368/3097267
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85191383093
https://academic.oup.com/mnras/article/530/2/1829/7632150?login=true
Diritti
open access
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/3097267/1/Sebastian-2024.pdf
Soggetti
  • galaxies: haloe

  • quasars: absorption l...

  • early Universe

  • Astrophysics - Astrop...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback