Logo del repository
  1. Home
 
Opzioni

Clustering Textual Data by Latent Dirichlet Allocation: Application and Extension to Hierarchical Data

G. DIMAI
•
TORELLI, Nicola
2010
  • book part

Abstract
Latent Dirichlet Allocation is a generative probabilistic model that can be used to describe and analyse textual data. We extend the basic LDA model to search and classify a large set of administrative documents taking into account the structure of the textual data that show a clear hierarchy. This can be considered as a general approach to the analysis of short texts semantically linked to larger texts. Some preliminary empirical evidence that support the proposed model is presented.
DOI
10.1007/978-3-642-03739-9_28
WOS
WOS:000302851400028
Archivio
http://hdl.handle.net/11368/3003
Diritti
metadata only access
Soggetti
  • Text mining

  • Variational inference...

  • Hierarchical model

  • Bayesian methods

Web of Science© citazioni
0
Data di acquisizione
Feb 3, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback