Logo del repository
  1. Home
 
Opzioni

Machine learning to improve interpretability of clinical, radiological and panel-based genomic data of glioma grade 4 patients undergoing surgical resection

Dal Bo M.
•
Polano M.
•
Ius T.
altro
Toffoli G.
2023
  • journal article

Periodico
JOURNAL OF TRANSLATIONAL MEDICINE
Abstract
Background: Glioma grade 4 (GG4) tumors, including astrocytoma IDH-mutant grade 4 and the astrocytoma IDH wt are the most common and aggressive primary tumors of the central nervous system. Surgery followed by Stupp protocol still remains the first-line treatment in GG4 tumors. Although Stupp combination can prolong survival, prognosis of treated adult patients with GG4 still remains unfavorable. The introduction of innovative multi-parametric prognostic models may allow refinement of prognosis of these patients. Here, Machine Learning (ML) was applied to investigate the contribution in predicting overall survival (OS) of different available data (e.g. clinical data, radiological data, or panel-based sequencing data such as presence of somatic mutations and amplification) in a mono-institutional GG4 cohort. Methods: By next-generation sequencing, using a panel of 523 genes, we performed analysis of copy number variations and of types and distribution of nonsynonymous mutations in 102 cases including 39 carmustine wafer (CW) treated cases. We also calculated tumor mutational burden (TMB). ML was applied using eXtreme Gradient Boosting for survival (XGBoost-Surv) to integrate clinical and radiological information with genomic data. Results: By ML modeling (concordance (c)- index = 0.682 for the best model), the role of predicting OS of radiological parameters including extent of resection, preoperative volume and residual volume was confirmed. An association between CW application and longer OS was also showed. Regarding gene mutations, a role in predicting OS was defined for mutations of BRAF and of other genes involved in the PI3K-AKT-mTOR signaling pathway. Moreover, an association between high TMB and shorter OS was suggested. Consistently, when a cutoff of 1.7 mutations/megabase was applied, cases with higher TMB showed significantly shorter OS than cases with lower TMB. Conclusions: The contribution of tumor volumetric data, somatic gene mutations and TBM in predicting OS of GG4 patients was defined by ML modeling.
DOI
10.1186/s12967-023-04308-y
WOS
WOS:001024944200001
Archivio
https://hdl.handle.net/11390/1255925
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85164208524
https://ricerca.unityfvg.it/handle/11390/1255925
Diritti
open access
Soggetti
  • Carmustine wafer

  • Glioma

  • Machine learning

  • Prognosi

  • Tumor mutational burd...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback