Logo del repository
  1. Home
 
Opzioni

BV solutions of the semidiscrete upwind scheme

Bianchini, Stefano
2003
  • journal article

Periodico
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
Abstract
We consider the semidiscrete upwind scheme u(t, x), + 1/ε (f(u(t, x)) - f(u(t, x - ε))) = 0. (1) We prove that if the initial data ū of (1) has small total variation, then the solution uε(t) has uniformly bounded BV norm, independent of t, ε. Moreover by studying the equation for a perturbation of (1) we prove the Lipschitz-continuous dependence of uε(t) on the initial data. Using a technique similar to the vanishing-viscosity case, we show that as ε → 0 the solution uε(t) converges to a weak solution of the corresponding hyperbolic system, ut + f(u)x, = 0. (2) Moreover this weak solution coincides with the trajectory of a Riemann semigroup, which is uniquely determined by the extension of Liu's Riemann solver to general hyperbolic systems.
DOI
10.1007/s00205-002-0237-2
WOS
WOS:000182435400001
Archivio
http://hdl.handle.net/20.500.11767/11643
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0037596496
Diritti
metadata only access
Soggetti
  • Settore MAT/05 - Anal...

Scopus© citazioni
16
Data di acquisizione
Jun 14, 2022
Vedi dettagli
Web of Science© citazioni
15
Data di acquisizione
Mar 18, 2024
Visualizzazioni
4
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback