Logo del repository
  1. Home
 
Opzioni

How perturbations in the matrix of linear systems of ordinary differential equations propagate along solutions

Farooq A.
•
Maset S.
2022
  • journal article

Periodico
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
Abstract
This paper addresses how perturbations in the matrix A propagate along the solution of the n-dimensional linear ordinary differential equation y′(t)=Ay(t),t≥0,y(0)=y0.In other words, for fixed t≥0 and y0∈Rn, we study the conditioning of the problem A↦etAy0.We also study the asymptotic behavior of the conditioning as t→+∞. The analysis is carried out for a normal matrix A.
DOI
10.1016/j.cam.2021.114046
WOS
WOS:000789647800010
Archivio
http://hdl.handle.net/11368/3021333
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85123032747
https://www.sciencedirect.com/science/article/pii/S0377042721006129
Diritti
open access
license:copyright editore
license:creative commons
license uri:http://creativecommons.org/licenses/by-nc-nd/4.0/
FVG url
https://arts.units.it/request-item?handle=11368/3021333
Soggetti
  • Conditioning

  • Linear ordinary diffe...

  • Normal matrix

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback