Logo del repository
  1. Home
 
Opzioni

Riemann zeros as quantized energies of scattering with impurities

LeClair A.
•
Mussardo G.
2024
  • journal article

Periodico
JOURNAL OF HIGH ENERGY PHYSICS
Abstract
We construct an integrable physical model of a single particle scattering with impurities spread on a circle. The S-matrices of the scattering with the impurities are such that the quantized energies of this system, coming from the Bethe Ansatz equations, correspond to the imaginary parts of the non-trivial zeros of the the Riemann zeta(s) function along the axis \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{R}\left(s\right)=\frac{1}{2}$$\end{document} of the complex s-plane. A simple and natural generalization of the original scattering problem leads instead to Bethe Ansatz equations whose solutions are the non-trivial zeros of the Dirichlet L-functions again along the axis \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{R}\left(s\right)=\frac{1}{2}$$\end{document}. The conjecture that all the non-trivial zeros of these functions are aligned along this axis of the complex s-plane is known as the Generalised Riemann Hypothesis (GRH). In the language of the scattering problem analysed in this paper the validity of the GRH is equivalent to the completeness of the Bethe Ansatz equations. Moreover the idea that the validity of the GRH requires both the duality equation (i.e. the mapping s -> 1 - s) and the Euler product representation of the Dirichlet L-functions finds additional and novel support from the physical scattering model analysed in this paper. This is further illustrated by an explicit counterexample provided by the solutions of the Bethe Ansatz equations which employ the Davenport-Heilbronn function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{D}\left(s\right)$$\end{document}, i.e. a function whose completion satisfies the duality equation chi(s) = chi(1 - s) but that does not have an Euler product representation. In this case, even though there are infinitely many solutions of the Bethe Ansatz equations along the axis \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{R}\left(s\right)=\frac{1}{2}$$\end{document}, there are also infinitely many pairs of solutions away from this axis and symmetrically placed with respect to it.
DOI
10.1007/JHEP04(2024)062
WOS
WOS:001256032700005
Archivio
https://hdl.handle.net/20.500.11767/141912
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85190270509
https://arxiv.org/abs/2307.01254
https://ricerca.unityfvg.it/handle/20.500.11767/141912
Diritti
open access
Soggetti
  • Bethe Ansatz

  • Integrable Field Theo...

  • Settore PHYS-02/A - F...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback