Logo del repository
  1. Home
 
Opzioni

Constructions of stable generalized complex 6-manifolds and their fundamental groups

Mun, Ui Ri
2018-09-14
Abstract
Torus surgeries in dimension four (or called $C^\infty$-log transformations) have been widely employed to construct a stable generalized complex 4-manifold with nonempty type change locus. We find a torus surgery in dimension six which can be applied to a stable generalized 6-complex manifold to yield a new stable generalized complex 6-manifold. Each torus surgery has an effect of increasing the number of path-connected components on the type change locus by one as in dimension four. Using this torus surgery, we prove that there exist countably infinite stable generalized complex 6-manifolds with nonempty type change locus that are not homologically equivalent to a product of lower dimensional manifolds. Also, it is shown that any finitely presented group is the fundamental group of a stable generalized complex 6-manifold with nonempty type change locus on which each path-connected component is diffeomorphic to $T^4$.
Archivio
http://hdl.handle.net/20.500.11767/82354
Diritti
open access
Soggetti
  • Generalized complex g...

  • Torus surgery, Stable...

  • Cut-and-paste constru...

  • Generalized complex 6...

  • Fundamental groups of...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback