Logo del repository
  1. Home
 
Opzioni

An innovative similarity measure for sentence plagiarism detection

Augello, Agnese
•
CUZZOCREA, Alfredo Massimiliano
•
Pilato, Giovanni
altro
Vassallo, Giorgio
2016
  • conference object

Abstract
We propose and experimentally assess Semantic Word Error Rate (SWER), an innovative similarity measure for sentence plagiarism detection. SWER introduces a complex approach based on latent semantic analysis, which is capable of outperforming the accuracy of competitor methods in plagiarism detection. We provide principles and functionalities of SWER, and we complement our analytical contribution by means of a significant preliminary experimental analysis. Derived results are promising, and confirm to use the goodness of our proposal.
DOI
10.1007/978-3-319-42092-9_42
WOS
WOS:000381936000042
Archivio
http://hdl.handle.net/11368/2898304
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84978239616
http://www.springer.com/it/book/9783319421100
Diritti
closed access
license:digital rights management non definito
FVG url
https://arts.units.it/request-item?handle=11368/2898304
Soggetti
  • Plagiarism detection

  • Sentence similarity m...

  • Theoretical Computer ...

  • Computer Science (all...

Web of Science© citazioni
1
Data di acquisizione
Mar 26, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback