Logo del repository
  1. Home
 
Opzioni

Non-virtually abelian anisotropic linear groups are not boundedly generated

Corvaja P.
•
Rapinchuk A. S.
•
Ren J.
•
Zannier U. M.
2022
  • journal article

Periodico
INVENTIONES MATHEMATICAE
Abstract
We prove that if a linear group Gamma subset of GL(n)(K) over a field K of characteristic zero is boundedly generated by semi-simple (diagonalizable) elements then it is virtually solvable. As a consequence, one obtains that infinite S-arithmetic subgroups of absolutely almost simple anisotropic algebraic groups over number fields are never boundedly generated. Our proof relies on Laurent's theorem from Diophantine geometry and properties of generic elements.
DOI
10.1007/s00222-021-01064-y
WOS
WOS:000682411000001
Archivio
https://hdl.handle.net/11390/1249427
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85112621295
https://ricerca.unityfvg.it/handle/11390/1249427
Diritti
metadata only access
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback