Using molecular dynamics simulations, we study the slow dynamics of a hard sphere fluid confined in a disordered porous matrix. The presence of both discontinuous and continuous glass transitions as well as the complex interplay between single-particle and collective dynamics are well captured by a recent extension of mode-coupling theory for fluids in porous media. The degree of universality of the mode-coupling theory predictions for related models of colloids is studied by introducing size disparity between fluid and matrix particles, as well as softness in the interactions.