Logo del repository
  1. Home
 
Opzioni

Pushing runtime verification to the limit: May process semantics be with Us

della Monica D.
•
Francalanza A.
2020
  • conference object

Abstract
We propose a combined approach that permits automated formal verification to be spread across the pre- and post-deployment phases of a system development, with the aim of calibrating the management of the verification burden. Our approach combines standard model checking methods with runtime verification, a relatively novel formal technique that verifies a system during its execution. We carry out our study in terms of the Hennessy-Milner Logic, a branching-time logic for specifying reactive system correctness. Whereas we will be mainly concerned with limiting the model checking verification burden, runtime verification has been shown to handle a strict subset of the expressible properties in our logic of study, posing constraints on what can be shifted to the post-deployment phase. We present a solution, based on modal transition systems and modal refinement, for the fragment of the Hennessy-Milner Logic devoid of recursion, i.e., without least and greatest fixpoint operators.
Archivio
http://hdl.handle.net/11390/1178512
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85082130918
Diritti
metadata only access
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback