Logo del repository
  1. Home
 
Opzioni

Linear combination of bulk bands method for investigating the low-dimensional electron gas in nanostructured devices

ESSENI, David
•
PALESTRI, Pierpaolo
2005
  • journal article

Periodico
PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS
Abstract
This paper concerns the determination of the band structure of physical systems with reduced dimensionality with the method of the linear combination of bulk band (LCBB), according to the full-band energy dispersion of the underlying crystal. The derivation of the eigenvalue equation is reconsidered in detail for quasi-two-dimensional (2D) and quasi-one-dimensional (1D) systems and we demonstrate how the choice of the volume expansion in the three-dimensional reciprocal lattice space is important in order to obtain a separated eigenvalue problem for each wave vector in the unconstrained plane (for 2D systems) or in the unconstrained direction (for 1D systems). The clarification of the expansion volume naturally leads to identification of the 2D and 1D first Brillouin zone (BZ) for any quantization direction. We then apply the LCBB approach to the silicon and germanium inversion layers and illustrate the main features of the energy dispersion and the 2D first BZ for the [001], [110], and [111] quantization directions. We further compare the LCBB energy dispersion with the one obtained with the conventional effective mass approximation (EMA) in the case of (001) silicon inversion layers. As an interesting result, we show that the LCBB method reveals a valley at the edge of the 2D first BZ which is not considered by the EMA model and that gives a significant contribution to the 2D density of states.
DOI
10.1103/PhysRevB.72.165342
WOS
WOS:000232934900091
Archivio
http://hdl.handle.net/11390/882388
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-29644440232
Diritti
closed access
Scopus© citazioni
53
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Web of Science© citazioni
52
Data di acquisizione
Mar 27, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback