Logo del repository
  1. Home
 
Opzioni

miR-200 family members reduce senescence and restore idiopathic pulmonary fibrosis type II alveolar epithelial cell transdifferentiation

Silvia Moimas
•
Francesco Salton
•
Beata Kosmider
altro
and Marco Confalonieri
2019
  • journal article

Periodico
ERJ OPEN RESEARCH
Abstract
Rationale: Alveolar type II (ATII) cells act as adult stem cells contributing to alveolar type I (ATI) cell renewal and play a major role in idiopathic pulmonary fibrosis (IPF), as supported by familial cases harbouring mutations in genes specifically expressed by these cells. During IPF, ATII cells lose their regenerative potential and aberrantly express pathways contributing to epithelial–mesenchymal transition (EMT). The microRNA miR-200 family is downregulated in IPF, but its effect on human IPF ATII cells remains unproven. We wanted to 1) evaluate the characteristics and transdifferentiating ability of IPF ATII cells, and 2) test whether miR-200 family members can rescue the regenerative potential of fibrotic ATII cells. Methods: ATII cells were isolated from control or IPF lungs and cultured in conditions promoting their transdifferentiation into ATI cells. Cells were either phenotypically monitored over time or transfected with miR-200 family members to evaluate the microRNA effect on the expression of transdifferentiation, senescence and EMT markers. Results: IPF ATII cells show a senescent phenotype ( p16 and p21), overexpression of EMT (ZEB1/2) and impaired expression of ATI cell markers (AQP5 and HOPX) after 6 days of culture in differentiating medium. Transfection with certain miR-200 family members (particularly miR-200b-3p and miR-200c-3p) reduced senescence marker expression and restored the ability to transdifferentiate into ATI cells. Conclusions: We demonstrated that ATII cells from IPF patients express senescence and EMT markers, and display a reduced ability to transdifferentiate into ATI cells. Transfection with certain miR-200 family members rescues this phenotype, reducing senescence and restoring transdifferentiation marker expression.
DOI
10.1183/23120541.00138-2019
WOS
WOS:000532552100025
Archivio
http://hdl.handle.net/11368/2954510
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85090678389
https://openres.ersjournals.com/content/5/4/00138-2019#ack-1
Diritti
open access
license:creative commons
license:creative commons
license uri:http://creativecommons.org/licenses/by/4.0/
license uri:http://creativecommons.org/licenses/by/4.0/
FVG url
https://arts.units.it/bitstream/11368/2954510/1/ERJ open research 2019.pdf
Soggetti
  • miRNA200

  • idiopathic pulmonary ...

  • trans-differentiation...

  • alveolar epithelial c...

  • epithelial-mesenchyma...

Web of Science© citazioni
30
Data di acquisizione
Mar 17, 2024
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback