Logo del repository
  1. Home
 
Opzioni

Improving the Convergence Order of the Meshless Approach for the Cell Method for Numerical Integration of Discrete Conservation Laws

ZOVATTO, LUIGINO
•
M. NICOLINI
2007
  • journal article

Periodico
INTERNATIONAL JOURNAL OF COMPUTATIONAL ENGINEERING SCIENCE
Abstract
In thiswork, the problem of increasing the convergence order of the integral meshless method already proposed by the same authors is addressed. Solutions are determined through equations directly written in discrete form over a tributary region represented by the circle with center in the generic node and radius given by the average of the distances between the node itself and its neighbors, thus allowing a considerable ease in writing the discrete form of the governing equations. The proposed approach, besides avoiding global mesh generation, adopts interpolating polynomials, which exactly reproduce nodal values of field variables, and eliminates some problems typically encountered when posing Dirichlet and Neumann boundary conditions with the Finite Element Method. Several numerical schemes adopting extended or compact computational cells are proposed and tested for the Laplace equation, in line with the previous papers. Results show that, when using interpolating polynomials that satisfy also the differential operator in some nodes, compact computational cells characterized by the fifth-order of convergence may be constructed.
Archivio
http://hdl.handle.net/11368/1925376
Diritti
metadata only access
Soggetti
  • Convergence

  • Meshle

  • Cell Method

Visualizzazioni
5
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback