Logo del repository
  1. Home
 
Opzioni

On the desingularization of Kahler orbifolds with constant scalar curvature

Lena, Riccardo
2013-12-05
  • doctoral thesis

Abstract
In Chapter 1 we recall some basic notions of complex and K ̈ahler geometry and we introduce some technical results regarding cscK metrics that we will use intensively in successive chapters. We also explain in detail what kind of result we want to prove and the strategy of the proof. We warmly suggest to read section 1.6.2 where we give a detailed overview of the proof of Theorem 1.7. In Chapter 2 we investigate the properties of particular linear differential operators on cscK manifolds. More precisely we study their invertibility properties between weighted H ̈older spaces. In Chapter 3 we begin the proof of our main result. With tools we introduced in chapter 2 we construct families, depending on some parameters, of cscK metrics on particular manifolds with boundary. In Chapter 4 we finish the proof we started in the preceding chapter. To conclude the proof we perform the connected sum construction along the boundaries of the manifolds we chose in chapter 3 and we glue the families of cscK metrics we constructed on them. To glue the families of metrics we use the technique known as Cauchy data matching. We also discuss the proof of Theorem 4.2. In Chapter 5 we look for examples of cscK orbifolds satisfying assumptions of Theorem 1.7. We focus our attention on toric 3-folds and it turns out that there is no toric three-dimensional orbifold satisfying our requests. In Chapter 6 we discuss the extension of Theorem 1.7 to 2-dimensional orbifolds and the relative technical issues. We discuss, moreover, some conjectures and ideas for future work.
Archivio
http://hdl.handle.net/20.500.11767/4830
Diritti
open access
Soggetti
  • Settore MAT/03 - Geom...

Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback