Logo del repository
  1. Home
 
Opzioni

Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems

Cangiani A.
•
Georgoulis E. H.
•
Metcalfe S.
2014
  • journal article

Periodico
IMA JOURNAL OF NUMERICAL ANALYSIS
Abstract
This work is concerned with the derivation of a robust a posteriori error estimator for a discontinuous Galerkin (dG) method discretization of a linear nonstationary convection-diffusion initial/boundary value problem and with the implementation of a corresponding adaptive algorithm. More specifically, we derive a posteriori bounds for the error in the L 2 (H 1) + L for an interior penalty dG discretization in space and a backward Euler discretization in time. Finally, an adaptive algorithm is proposed utilizing the error estimator. Optimal rate of convergence of the adaptive algorithm is observed in a number of test problems and for various Pèclet numbers.
DOI
10.1093/imanum/drt052
WOS
WOS:000343320900011
Archivio
https://hdl.handle.net/20.500.11767/135254
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84928316702
https://ricerca.unityfvg.it/handle/20.500.11767/135254
Diritti
closed access
Soggetti
  • a posteriori error es...

  • adaptive finite eleme...

  • discontinuous Galerki...

  • unsteady convection-d...

  • Settore MAT/08 - Anal...

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback