Logo del repository
  1. Home
 
Opzioni

Spinal circuits formation: a study of developmentally regulated markers in organotypic cultures of embryonic mouse spinal cord

AVOSSA D.
•
ROSATO SIRI M.
•
MAZZAROL F.
•
BALLERINI, Laura
2003
  • journal article

Periodico
NEUROSCIENCE
Abstract
Long-term embryonic spinal cultures were developed and analyzed at sequential times in vitro, namely after 1, 2, and 3 weeks. Spatial and temporal regulation of neuronal and non-neuronal markers was investigated by immunocytochemical and Western blotting analysis using antibodies against: a) the non-phosphorylated epitope of neurofilament H (SMI32 antibody); b) the enzyme choline acetyltransferase, to localize motoneurons and cholinergic interneurons; c) the enzyme glutamic acid decarboxylase 67, to identify GABAergic interneurons; d) human eag-related gene (HERG) K(+) channels, which appear to be involved in early stages of neuronal and muscle development; e) glial fibrillary acidic protein, to identify mature astrocytes; f) myelin basic protein, to identify the onset of myelination by oligodendrocytes. To examine the development of muscle acetylcholine receptors clusters in vitro, we incubated live cultures with tetramethylrhodamine isothiocyanate-labeled alpha-bungarotoxin, and we subsequently immunostained them with SMI32 or with anti-myosin antibodies. Our results indicate that the developmental pattern of expression of these markers in organotypic cultures shows close similarities to the one observed in vivo. Therefore, spinal organotypic cultures provide a useful in vitro model system to study several aspects of neurogenesis, gliogenesis, muscle innervation, and synaptogenesis.
DOI
10.1016/j.neuroscience.2003.07.006
Archivio
http://hdl.handle.net/11368/1690003
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-0242570575
Diritti
metadata only access
Soggetti
  • spinal circuit

  • motor network develop...

  • spinal interneuron

  • organotypic slices

Scopus© citazioni
55
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
55
Data di acquisizione
Mar 21, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback