Logo del repository
  1. Home
 
Opzioni

Hodge integrals and tau-symmetric integrable hierarchies of Hamiltonian evolutionary PDEs

Dubrovin, Boris
•
Liu, Si Qi
•
Yang, Di
•
Zhang, Y.
2016
  • journal article

Periodico
ADVANCES IN MATHEMATICS
Abstract
For an arbitrary semisimple Frobenius manifold we construct Hodge integrable hierarchy of Hamiltonian partial differential equations. In the particular case of quantum cohomology the tau-function of a solution to the hierarchy generates the intersection numbers of the Gromov–Witten classes and their descendents along with the characteristic classes of Hodge bundles on the moduli spaces of stable maps. For the one- dimensional Frobenius manifold the Hodge hierarchy is an integrable deformation of the Korteweg–de Vries hierarchy depending on an infinite number of parameters. Conjecturally this hierarchy is a universal object in the class of scalar Hamiltonian integrable hierarchies possessing tau-functions.
DOI
10.1016/j.aim.2016.01.018
WOS
WOS:000373093200009
Archivio
http://hdl.handle.net/20.500.11767/11957
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84959018495
https://arxiv.org/abs/1409.4616
Diritti
metadata only access
Soggetti
  • Frobenius manifold, G...

  • Settore MAT/07 - Fisi...

Scopus© citazioni
21
Data di acquisizione
Jun 7, 2022
Vedi dettagli
Web of Science© citazioni
33
Data di acquisizione
Mar 26, 2024
Visualizzazioni
1
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback