Logo del repository
  1. Home
 
Opzioni

Predicting outcomes of pelvic exenteration using machine learning

Dudurych I.
•
Kelly M. E.
•
Aalbers A. G. J.
altro
Winter D. C.
2020
  • journal article

Periodico
COLORECTAL DISEASE
Abstract
Aim: We aim to compare machine learning with neural network performance in predicting R0 resection (R0), length of stay > 14 days (LOS), major complication rates at 30 days postoperatively (COMP) and survival greater than 1 year (SURV) for patients having pelvic exenteration for locally advanced and recurrent rectal cancer. Method: A deep learning computer was built and the programming environment was established. The PelvEx Collaborative database was used which contains anonymized data on patients who underwent pelvic exenteration for locally advanced or locally recurrent colorectal cancer between 2004 and 2014. Logistic regression, a support vector machine and an artificial neural network (ANN) were trained. Twenty per cent of the data were used as a test set for calculating prediction accuracy for R0, LOS, COMP and SURV. Model performance was measured by plotting receiver operating characteristic (ROC) curves and calculating the area under the ROC curve (AUROC). Results: Machine learning models and ANNs were trained on 1147 cases. The AUROC for all outcome predictions ranged from 0.608 to 0.793 indicating modest to moderate predictive ability. The models performed best at predicting LOS > 14 days with an AUROC of 0.793 using preoperative and operative data. Visualized logistic regression model weights indicate a varying impact of variables on the outcome in question. Conclusion: This paper highlights the potential for predictive modelling of large international databases. Current data allow moderate predictive ability of both complex ANNs and more classic methods.
DOI
10.1111/codi.15235
WOS
WOS:000553038700001
Archivio
https://hdl.handle.net/11390/1255292
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85088562349
https://ricerca.unityfvg.it/handle/11390/1255292
Diritti
metadata only access
Soggetti
  • Artificial intelligen...

  • artificial neural net...

  • colorectal surgery

  • machine learning

  • pelvic exenteration

google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback