We clarify the relationship between freezing, melting, and the onset of glassy dynamics in a prototypical glass-forming mixture model. Our starting point is a precise operational definition of the onset of glassiness, as expressed by the emergence of inflections in time-dependent correlation functions. By scanning the temperature-composition phase diagram of the mixture, we find a disconnect between the onset of glassiness and freezing. Surprisingly, however, the onset temperature closely tracks the melting line, along which the excess entropy is approximately constant. At fixed composition, all characteristic temperatures display nonetheless similar pressure dependencies, which are very well predicted by the isomorph theory. While our results rule out a general connection between thermodynamic metastability and glassiness, they call for a reassessment of the role of crystalline precursors in glass-forming liquids.