Logo del repository
  1. Home
 
Opzioni

Encoding context likelihood functions as classifiers in particle filters for target tracking

VACI, Lubos
•
SNIDARO, Lauro
•
FORESTI, Gian Luca
2016
  • conference object

Abstract
In this work we address the problem of multilevel context representation and exploitation for target tracking. Specifically, we present an approach for encoding different types of contextual information (CI) as likelihood functions via classifiers in particle filters. The proposed solution is sufficiently versatile as to be able to couch different types of CI. Promising results have been obtained from our simulations on synthetic data.
DOI
10.1109/MFI.2016.7849506
WOS
WOS:000405714400049
Archivio
https://hdl.handle.net/11390/1097967
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85015218726
http://ieeexplore.ieee.org/document/7849506/
Diritti
closed access
Soggetti
  • Tracking

  • Particle filter

  • Context

  • Classifier

  • Data Fusion

Scopus© citazioni
1
Data di acquisizione
Jun 2, 2022
Vedi dettagli
Visualizzazioni
2
Data di acquisizione
Apr 19, 2024
Vedi dettagli
google-scholar
Get Involved!
  • Source Code
  • Documentation
  • Slack Channel
Make it your own

DSpace-CRIS can be extensively configured to meet your needs. Decide which information need to be collected and available with fine-grained security. Start updating the theme to match your nstitution's web identity.

Need professional help?

The original creators of DSpace-CRIS at 4Science can take your project to the next level, get in touch!

Realizzato con Software DSpace-CRIS - Estensione mantenuta e ottimizzata da 4Science

  • Impostazioni dei cookie
  • Informativa sulla privacy
  • Accordo con l'utente finale
  • Invia il tuo Feedback